Encounter Conformal Equivalence Checker

Fast and accurate bug detection and correction, from RTL to final layout

Cadence® Encounter® Conformal® Equivalence Checker (EC) makes it possible to verify and debug multi-million–gate designs without using test vectors. It offers the industry’s only complete equivalence checking solution for verifying SoC designs—from RTL to final LVS netlist (SPICE)—as well as FPGA designs. Encounter Conformal EC enables designers to verify the widest variety of circuits, including complex arithmetic logic, datapaths, memories, and custom logic.

Benefits

• Exhaustively verifies multi-million–gate ASICs and FPGAs several times faster than traditional gate-level simulation
• Decreases the risk of missing critical bugs with independent verification technology
• Enables faster, more accurate bug detection and correction throughout the entire design flow

Figure 1: Encounter Conformal EC offers a complete solution, from RTL to final layout, to drive convergence on design goals

- Extends equivalence checking capability to complex datapaths and closes the RTL-to-layout verification gap (XL configuration)
- Ensures RTL models perform the same functions as the corresponding transistor circuits implemented on silicon (GXL configuration)
Encounter Conformal Equivalence Checker

Features

Encounter Conformal Equivalence Checker L

Encounter Conformal EC L combines extended functional checks with core equivalence checking technology.

Equivalence Checking

During the development of a design, it undergoes numerous iterations prior to final layout, and each step in this process has the potential to introduce logical bugs. Encounter Conformal EC L checks the functional equivalence of different versions of a design at these various stages and enables designers to identify and correct errors as soon as they are introduced, thereby maintaining the initial design intent.

Design Flow Independence

Encounter Conformal EC L provides an independent audit of the design process to eliminate the risks associated with sharing technologies across design implementation and verification products. The tool includes technologies developed independently from the design flow, including production-proven HDL parsing, synthesis, mapping, optimization, and datapath algorithms. Using Encounter Conformal EC L ensures that you will catch the maximum number of design bugs.

Integrated Environment

An intuitive graphical user interface (GUI) provides for setup and debugging. It allows users to work more productively and quickly pinpoint the cause of mismatches. The environment includes:

- Graphical debugging via an integrated schematic viewer that shows logic values for each error vector
- Full cross-highlighting between RTL model and circuit
- Automatic error candidate identification with assigned and weighted percentages
- Logic-cone pruning to focus debugging on relevant information

FPGA Equivalence Checking Support

As FPGA devices continue to grow in size and complexity, FPGA designers are facing design closure challenges similar to those encountered by their ASIC counterparts. Equivalence checking has become a necessity in the FPGA design implementation flow. Encounter Conformal EC L supports Synplify Pro synthesis, as well as the Xilinx ISE and Altera Quartus II implementation flows.

Extended Functional Checks

Encounter Conformal EC L enables designers to perform verification of semantic and structural properties of their designs. These checks complement equivalence checking by verifying areas previously not validated by traditional equivalence checkers and by finding difficult implementation bugs early in the design cycle. The end result is a safer verification solution.

- Semantic checks—Verify synthesis assumptions and find conditions that may create mismatches between RTL and gate-level simulations
- Structural checks—Include bus checks for data conflicts, set-reset exclusivity checks, and multi-port latch contention checks

Encounter Conformal Equivalence Checker XL

In addition to all the features provided by the L configuration, Encounter Conformal EC XL offers automated checking of complex datapaths and extends equivalence checking to final place-and-route netlist.

Datapath Synthesis Verification

Datapath optimization can create designs that are difficult to formally verify because of complex arithmetic operations. Designers have been relying on simulation...
to verify datapath blocks, but simulation runtimes are exceedingly long and the results can be incomplete.

Encounter Conformal EC XL offers a first-of-its-kind formal solution that exhaustively verifies complex datapath blocks without using test vectors. It can handle a wide variety of datapath structures required for high-performance designs.

- Automatic flat datapath module verification—Enables easy verification without manually specifying boundaries or architectures in the flattened netlist; automatically verifies merged operators; compares circuitry that has gone through expression optimization and automatically verifies multipliers with standard architectures and dynamic structures
- Advanced pipelining check and diagnosis—Verifies proper implementation of pipelined designs
- Carry-save verification capability—Allows verification of circuits containing carry-save transformations introduced during optimization for sequence of adders, multipliers, and registers

Final Circuit Verification

Encounter Conformal EC XL is the only verification product that enables a complete verification solution from RTL to final layout, driving convergence on original design goals. It functionally compares a SPICE netlist created for LVS or extracted from GDS to the RTL or gate model. This process ensures that the circuit on silicon has the same intent as the initial design that was verified.

Smart Setup and Diagnosis

Encounter Conformal EC XL includes a set of intelligent analysis commands to ease setup and diagnosis. For example, smart setup investigates the current environment and automatically remedies common setup issues sometimes experienced by new users. In tandem, non-equivalent analysis can be invoked if non-equivalences are encountered, and presents concise root cause information for quicker debug.

Parallel Processing

For larger and complex designs, overall verification time can be reduced with multiple licenses by running comparison and datapath analysis on many machines or cores simultaneously. LSF is also supported.

Encounter Conformal Equivalence Checker GXL

In addition to all the features in the L and XL configurations, Encounter Conformal EC GXL offers transistor circuit analysis for custom designs and embedded memories.

Designers can use Encounter Conformal EC GXL with custom embedded memories, arithmetic blocks, datapaths, standard and extended libraries, and all other custom and semi-custom digital circuit functions. Circuit styles supported include standard and complex Boolean functions, latches and registers, pass-gate, transmission-gate, tri-state switch logic, pre-charged logic cells, domino logic blocks, and dual-rail.

Custom Logic Abstraction

Encounter Conformal EC GXL analyzes digital transistor circuits and abstracts an equivalent logical Verilog® model. The underlying abstraction algorithms are more powerful than pattern-based solutions. A Verilog gate logic model of the abstracted circuit can be used for:

- Equivalence checking
- Fault grading—Preserves the circuit hierarchy and structure for maximum debugging efficiency
- Emulation—Provides accurate emulation models for actual transistor-level circuits
- Simulation acceleration—Runs many times faster than SPICE circuit simulation

Memory Verification

Traditional and symbolic simulation tools do not scale for verifying today’s memory functions and their ever-increasing complexity. Encounter Conformal EC GXL provides exhaustive logic verification and—since no testbench is needed—the quality of results is not limited by availability of time or resources to develop comprehensive tests. Encounter Conformal EC GXL generates memory primitive models for Verilog system simulation and complete logic function verification of the transistor circuit design using abstraction and equivalence checking.

- Intuitive graphical interface to generate specific primitives
- Generated primitives are address, word, and column MUX-configurable

Figure 3: Encounter Conformal EC provides complete verification from RTL to SPICE
• All read-write, read-only, and write-only combinations can be generated
• Generated simulation models have the highest performance and contain built-in assertions for trapping illegal memory use such as address collision and simultaneous read-write

Cadence Services and Support
• Cadence application engineers can answer your technical questions by telephone, email, or Internet—they can also provide technical assistance and custom training
• Cadence certified instructors teach more than 70 courses and bring their real-world experience into the classroom
• More than 25 Internet Learning Series (iLS) online courses allow you the flexibility of training at your own computer via the Internet
• Cadence Online Support gives you 24x7 online access to a knowledgebase of the latest solutions, technical documentation, software downloads, and more

Platforms
• Linux (32-bit, 64-bit)
• Sun Solaris (64-bit)
• IBM AIX (64-bit)

Language Support
• SystemVerilog
• VHDL (87, 93)
• SPICE (traditional, LVS)
• EDIF
• Liberty
• Mixed languages